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When in front of a classroom, a skilled teacher can read the room, identifying when students are engaged, frustrated, distracted,
etc. In recent years we have seen significant changes in the traditional classroom, with virtual classes becoming a normal
learning environment. Reasons for this change are the increased popularity of Massive Open Online Courses (MOOCs) and
the disruptions imposed by the ongoing COVID-19 pandemic. However, it is difficult for teachers to read the room in these
virtual classrooms, and researchers have begun to look at using sensors to provide feedback to help inform teaching practices.
The study presented here sought to ground classroom sensor data in the form of electrodermal activities (EDA) captured
using a wrist-worn sensing platform (Empatica E4), with observations about students’ emotional engagement in the class.
We collected a dataset from eleven students over eight lectures in college-level computer science classes. We trained human
annotators who provided ground truth information about student engagement based on in-class observations. Inspired by
related work in the field, we implemented an automated data analysis framework, which we used to explore momentary
assessments of student engagement in classrooms. Our findings surprised us because we found no significant correlation
between the sensor data and our trained observers’ data. In this paper, we present our study and framework for automated
engagement assessment, and report on our findings that indicate some of the challenges in deploying current technology for
real-world, automated momentary assessment of student engagement in the classroom. We offer reflections on our findings
and discuss ways forward toward an automated reading the room approach.
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1 INTRODUCTION
“As emotional practitioners, teachers can make classrooms exciting or dull and leaders can
turn colleagues into risk-takers or cynics. Teaching, learning and leading may not be solely
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emotional practices, but they are always irretrievably emotional in character, in a good way or
a bad way, by design or default.” [39]

For human teachers, detecting students’ emotions is an important part of mentoring, motivating, and managing
the classroom [47, 52, 60]. A skilled teacher can read the affect levels in classrooms and student engagement
with learning; interpreting their students’ emotions, and adjusting their approach to keep students engaged and
motivated. As the traditional collocated models of education have changed with the explosion of Massive Open
Online Courses (MOOCs) and the need for worldwide remote learning because of the COVID-19 pandemic, we
are seeing emerging research on replicating the emotional work of teachers in physical classrooms to virtual
platforms [1, 3, 5, 45].

However, it is difficult to automate affect detection. Much of the previous research that has tried to automate
affect detection in learning environments has taken place in controlled learning environments, such as Intelligent
Tutoring Systems (ITS) or educational games, rather than classrooms [22, 23, 68]. In these settings, highly trained
human observer data has been mapped to video data of facial expressions, hand gestures, body posture, and
computer interactions. While there has been some work tying data from video media (expressions, gestures, and
postures) to classroom experiences, namely the work of Ashwin and Guddetti [3–5], in general, the social nature
of the classroom has been treated differently than these individual learning environments. This is likely the result
of discomfort with the use of videos in classrooms and the privacy/security risk they pose [18] and difficulties
with controlling video quality.

Recently, several studies have sought to use less intrusive wearable technology to measure learners’ affect
in real-world classroom settings [20, 30, 34, 45, 53]. While this research is encouraging, we are critical of some
components: existing studies centered on understanding the overall affect levels of a whole lecture session, which
does not correspond to teachers’ needs during class. We aim to explore if an automated assessment of affect can
realistically support teachers’ classroom practices by measuring it in a moment-by-moment fashion. To that end,
we employed human observations to validate sensor data.

Previous studies have used self-report to measure students’ emotional engagement during class. Self-reporting
emotions or engagement at the end of an activity or class poses a number of issues regarding validity [45, 49, 53].
First, the self-reported data is subjective to each subject’s understanding of the emotional measures asked. Second,
reporting at the end of a class or activity only captures a momentary appraisal of the learners’ emotional state.
Third, the act of asking a student about their emotional state distracts them from learning – and thus changes
their engagement with learning. Fourth, students find the task disruptive and time-consuming, so they are less
likely to report consistently.
Using human observations of student engagement, we sought to address some of the above validity issues

and provide just-in-time data that helps teachers read the room. Our goal was to ground less-intrusive wearable
sensor data with the rich observational data that has been used in ITS studies. Although many affect states can
be observed in classrooms, we focused on correlating biometric sensor data with trained observers in classrooms
who recorded if students’ affect is on or off class topic. Our goal was to identify patterns in the sensor data that
showed engagement with the learning environment. We hoped the observation data would support the use
of wearable sensors in the classroom. However, we failed to find correlations between human observations of
momentary student engagement and sensor data in this study. As such, this paper calls for intensified research to
develop automated affect detection technology that is ready for deployments in classrooms (real or virtual).
The contributions of this paper can be summarized as follows:

• We designed and conducted a study in which we explored to what extent wearable EDA (electrodermal ac-
tivity) sensors and data analysis techniques can be used for momentary assessments of student engagement
in college classroom scenarios.
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• We trained human annotators to provided ground truth for student engagement based on live observations
in the classroom.We collected a dataset on eleven participants over eight lectures of college-level computer
science classes.

• We implemented and explored a range of data analysis methods that have been introduced in previous
related work. In contrast to what previous work suggests, we were not able to recognize changes in student
engagement from EDA sensor data.

• We reflect upon the implications of our findings on the prospects of automated, momentary assessment
of student engagement in the classroom and offer perspectives on what would be required to realize the
automated equivalent to a skilled teacher reading the room.

2 BACKGROUND AND RELATED WORK

2.1 Student Engagement
In this paper, we use the term “student engagement” to express when observed student behavior indicated
students were outwardly paying attention, and their affect indicated emotional and cognitive engagement with
the class. Our efforts to detect student engagement was not a perfect measure of the emotional and cognitive state
of students because it was based on behaviors we could observe. We used observable behavior as the measure to
simulate what a teacher might observe in a classroom setting. Our use of this term builds upon prior work in
learning sciences, education, and computing literature.

2.2 Defining Affect for Learning Environments
Much of the literature we reviewed for this study use the terms “affect” or “emotions.” Both terms are often used
to discuss students’ feelings in learning contexts. For the purpose of this paper, we will refer to affect as the
marker of experienced emotion. In other words, the goal is to understand emotion, and affect is the indicator of
emotions. In 2012, Calvo and D’Mello predicted five directions for affect-aware learning technologies that would
characterize the next several years of research and development, including an increased emphasis on interventions
in real classrooms instead of controlled labs [13]. However, in the ensuing years, most such technology has
focused on communicating affect to inform intelligent tutor systems [35, 62] for use in asynchronous or out-of-
school learning environments [14, 25, 37]. More recently, researchers have explored potential applications to
synchronous online classroom environments.

2.3 Defining Engagement for Learning
The construct of "engagement" in learning is difficult to define because it is contextual, multidimensional, and–
from a learning perspective–dependent upon learning goals and objectives [2]. How engagement is defined
impacts the choice of technology used to measure the construct and how ground truth is assessed [46]. In much
of the literature that uses multi-modal approaches (specifically biometric, behavioral, emotional, or cognitive
data) engagement is typically defined as relating to emotions and interests. As a result, researchers often measure
positive or negative valence and high or low arousal as proxies for engagement. However, valence may not be
as helpful in learning settings as less pleasant emotions, such as confusion or frustration–at least for a short
duration–can be linked to positive learning outcomes [46].

Di Lascio et al. monitored students’ in-real-time engagement during lectures [20]. They adopted Fredricks and
McColskey’s definition of engagement as a meta-construct consisting of behavioral, emotional, and cognitive
engagement [26]. For the study, Di Lascoio et al. focused on emotional engagement, which they argued "is
linked to students’ affective state and is connected to emotional reactions to teachers" [20]. In our classroom
observations, we made a similar distinction regarding the affect detection of student engagement. We sought
to considered students’ affective states and observed students’ behaviors as on-task or off-task. For example,
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we identified emotionally and cognitively on-task behavior when students nodded along with the professor,
frowned, or laughed in agreement with statements from the professor or classmates. We considered a behavior
off-task when a student looked at their phone or closed their eyes. The goal was to track short-term behavior and
emotions, to replicate how a teacher might read the room.

2.4 Wrist-Worn Sensing
For the context of our study, we examine the accuracy of wearable sensor data–specifically, data from students
wearing the Empatica E4 [29]–in measuring moment-by-moment emotional engagement with the class material.
Various modalities have been used to detect affect in learning environments, including speech [16, 58], facial
expressions [19, 24, 71], and physiological (wearable) sensor data [20, 21, 31, 40]. This paper is concerned with
the accuracy of affect detection using wrist-worn sensors because they show potential for use in online classroom
settings.
While speech and cameras for affect detection in learning settings have promising findings, they raise some

privacy and security risks. Students are generally wary of the potential abuse of such data in education [73],
and considerable attention has been paid to the ethical implications of instructors in an age of "mechanized
learning" [74]. For instance, the use of headbands to monitor children’s brainwaves in schools in China came
under significant scrutiny in 2019 and was subsequently suspended. These controversies highlight the delicate
nature of the use of affect-sensitive technology in learning environments. In order to justify these risks, the
benefits must be significant.

Wearable technology, especially wrist-worn platforms, incorporates a range of physiological sensors, including
sensors of movement (accelerometers, gyroscopes, magnetometers), heart rate, temperature, EDA or galvanic
skin response, and many more. These sensors allow us to capture and model the physiological parameters of
affect, cognitive load, and stress accurately, continuously, inexpensively, and with little intrusion [12, 20]. For
example, Hassib et al. applied electroencephalography (EEG) for audience engagement during presentations [40].
Di Lascio et al. investigated the potential opportunities in monitoring students’ engagement in class [20] and
audience engagement in conference presentation scenarios [31] using wearable devices that collect EDA data.
As sensor technology has become more seamless, comfortable, and ubiquitous, detecting affect based upon a
wearable device like a watch has become a direction for affect detection in learning research.
2.5 Automated Assessments of Student Engagement in the Classroom through Body-Worn Sensors
Prior attempts at using machine learning and data analysis to trigger automatic detection of student engagement
levels based on various sensor inputs have proven successful to varying degrees. However, so far, these prior
studies have not sought to demonstrate the ability to successfully determine momentary cognitive engagement
without multiple data inputs that can be intrusive to the environment and the study subject’s overall learning
environment.
One of the earliest methods to tackle this issue was template matching using EDA data to determine when a

participant is startled. Identification of a startled reaction based on the calibration state heavily relied on the
template matching methodology used during data analysis to identify startling episodes. This template matching
technique is a variation of pattern matching algorithms that normalizes the raw data and then creates a threshold
specific to each individual in the study [41].
Recent work has moved from using pattern matching to identify arousal in participants to using raw sensor

data to identify general arousal, physiological synchrony, and momentary engagement to validate engagement.
One of the first papers to use electrodermal sensors to identify momentary arousal based on surges in skin
conductivity involved creating similar thresholds to those used by the template matching method [41]. However,
these thresholds are based on statistical features of the data itself, such as standard deviation and peaks, rather
than initial calibration engagement. The threshold created by Cain was based on the standard deviation of an
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engineered feature named the "RCSC" which stands for Relative Change in Skin Conductivity[12]. In order to
identify peaks as moments of engagement, we used a threshold based on the standard deviation of the sample
and this threshold helped determine which peaks were of statistical relevance[12]. Another approach used to
accurately identify moments of engagement within EDA data is through the creation of engagement levels
within the data. Five engagement levels were created based on the statistical features of the data. Moments of
engagement were identified in this method by using jumps from one level of engagement to a different level of
engagement [20].

Themost recent successful approach to tackling this problem of identifying engagement collected accelerometer,
EDA, photoplethysmogram, video, and audio data and environmental data like noise and carbon dioxide data [28].
The EDA features used were created through EDA decomposition into tonic and phasic parts to better identify the
physiological synchrony between the student and the teacher and the arousing and unarousing moments noted
by previous studies. To identify the physiological synchrony between the two subjects, both Pearson Correlation
Coefficient and Dynamic Time Wrapping Distance were utilized in two separate features. The prediction pipeline
implemented by the study determined its ground truth using a survey based on the 5-point Likert scale to assign
an engagement score and then adopted the LightGBM Regressor to predict the engagement score. They note that
emotional engagement is the strength of these predictions. However, cognitive engagement was lower than the
random baseline, and overall engagement was the most predicted of all single-dimensional engagements.

2.6 Student Engagement Measures
In this section, we consider student engagement measures used by researchers that might be used in validating
student engagement with wearable sensor data. In Fredricks and McColskey’s review of student engagement
measures, they outline five methods [26]. First, and most commonly used, is student self-reporting. Second, and
related to self-reporting, is experience sampling, where students are reminded (usually using technology) to
report their current location, activities, and cognitive and affective states. Third is teachers’ rating of students
with a reflective checklist that can provide teachers with an aggregated class assessment of student engagement.
Fourth is interviews conducted at the end of a class or course that often uses a stimulated recall process[61]. Fifth
is observations developed to measure students’ on- and off-task behavior as a gauge of student engagement.

Researchers have also used qualitative methods to establish a ground truth for their sensor data in educational
settings. Similar to psychology and education research, the method most commonly used in wearable studies on
student engagement is self-reporting [20]. Meta reviews of tutoring systems that use wearable sensors outline two
methods for data training and validation of student engagement: self-report of emotional state and measurements
under experimental methods that induce specific emotions [22, 23, 26].
There are exceptions. One is the Baker Rodrigo Ocumpaugh Monitoring Protocol (BROMP). This is a time-

sampling method for quantitative field observations of affect, on-task / off-task behavior in the classroom,
educational gaming, and intelligent tutor contexts [56]. BROMP has been used as ground truth in validating
sensor data from multiple sources such as motion sensor and video data, and EDA data with synthetic noise
injection [68]. While some researchers have successfully found correlations between the BROMP labels and these
types of sensors, others have found that they did not yield effective models of affect recognition with models
performing "only marginally better than chance" [68]. Similar to BROMP, we conducted a time-sampling method
for affect, valance, engagement, and disengagement in classroom content. However, we focused on physiological
sensor data from wearables rather than the wide range of methods that could be used in a lab setting.

Our choice of observational methods was primarily motivated by our desire to understand if wearable sensors
could identify the moment-by-moment changes of students’ engagement during class time. The other methods
used to measure student engagement; self reporting, experience sampling, teacher ratings and interviews, all
provide reflective assessments that would not be useful to a teacher in the moment. While observation did
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provide us with this real time data there are concerns that the subjective nature of observations involve inferring
when individuals are engaged by their actions or discourse [70]. While the validity of observational data has
been questioned because of students ability to hide their engagement levels during class [27, 61] other research
indicates concurrent validity of observed and self-reported student engagement measures [72], and other have
identified similar subjective issues with self-reported data [26, 70]. But as Sinatra suggests, the selection of student
engagement measurement tools should align with the granularity of the data that researchers seek to address
and the questions they seek to measure.
While numerous studies have explored affect detection related to learning„ these studies tend to take place

in contexts related to ITS and learning games rather than in traditional classroom settings [22, 64, 75] (e.g.,
laboratories, online experimental settings, and school computer laboratories). As a result, these studies do not
reflect the "blooming, buzzing confusion" of classroom settings [10]. Therefore it is unclear if the classroom
context, in person or online, with all of the possible distractions and deviations from the learning purpose can be
comparable. We are not suggesting that the affect detection is not accurate, rather that in a 60 – 90-minute online
or physical classroom filled with students, technology breakdowns, and other distractions, the affect detected
may be reporting emotions unrelated to learning.

3 CASE STUDY: DATA COLLECTION
Our work aims to extend previous work towards automated assessment of student affect and engagement by
measuring moment-by-moment changes in affect and engagement – similar to how teachers read the room.
Although self-reporting has been the prevalent method to identify affect in classroom settings for those seeking to
validate wearable sensor data [20, 30, 34, 45, 49, 53], it does not reflect just-in-time data that would help teachers
read the room. We decided, thus, to use third-party observations similar to the Baker-Rodrigo Observation Method
Protocol (BROMP) [56]. This qualitative method can provide a detailed account of engagement levels changing
across time within particular learning contexts [56].

We collected our data during a period of four weeks in 2019. In what follows, we provide details of the research
context, participants, and data collected.

3.1 Research Context and Participants
The research team was made of experts in pattern recognition, applied machine learning, psychology, learning
sciences, and qualitative methods. This expertise allowed us to apply a strong understanding of both quantitative
and qualitative approaches to the study and background in the classroom context.

We recruited eleven students 18 - 30 years of age (four females and seven males) across two large, lecture-based
computer science classes in a public U.S. institute (five students were at a Bachelor’s level and six students were
at a graduate level). Both courses had an average of 275 students. We chose these courses for three reasons. First,
they were large enough to simulate many aspects of online learning environment, with teachers having difficulty
tracking student engagement, which we deemed relevant given the goal of exploring the applicability of sensors
within the complexity of online class scenarios. Second, the courses were popular and oversubscribed, meaning
that not every student could be admitted and all the students who were admitted were eager to learn. Third,
instructors were willing to have researchers observe classes, and the course schedule aligned with observers’
schedules. However, we acknowledge that the there are many ways that a in person classroom with an observer
present is not the same environment as an online course, which limits the transferability between context

A recruitment message was distributed through the class learning management system and announced at the
beginning of several lectures. Once students reached out to the research team voluntarily, we introduced them to
the study procedure and wearable devices, presented them with an informed consent form approved by our IRB,
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Table 1. Distribution of observers to class sessions and participants across the study

Observer Class Week Session Participants

O1 B1 1, 2 1-4 P4,P5,P6
3, 4 5-8 P7, P11

O2 B2 1, 2 1-4 P1,P2,P3
3, 4 5-8 P8, P9, P10

gathered information about their demographic and their experience with lectures, using on-body sensors, and
sharing physiological data.

We conducted observations with each participant during four lecture times for a total of 44 in-class observations.
These observations lasted for the whole 90-minute class sessions and took place across two weeks. The Observers
noted engagement data for each student. After practicing the observation in classrooms, we determined that given
the attention demand on the observers’ side, each observer captured data for a maximum of three students per
class session. This is similar to other observation protocols [56]. Table 1 describes the distribution of observers,
sessions, and participants across the study. While observations were taking place, each participant wore an
Empatica E4 (wrist-worn) device that captured physiological signals.

3.2 Collected Data
3.2.1 Physiological Data. We used the Empatica E4 to collect students’ physiological data. This device uses four
sensors to measure blood volume pulse, acceleration, peripheral skin temperature, and electrodermal activity.
Although the wearable nature of the E4 provides various advantages of continuously gathering sensor data, it can
lead to unreliable data when used in conditions where free movements interfere with the sensors’ functioning.

3.2.2 Observer-Annotated Data. Observers underwent extensive training to ensure that they could capture
students’ behaviors in relation to their class engagement and could attain an agreement on how to conduct obser-
vations. First, the research team adapted the work of [9] defining pleasure/activation states to a valence/arousal
assessment 5-point Likert scale (see Table 2). Observers first used the instrument to assess the engagement of
students recorded in Youtube class videos. Once they revised their notes and confirmed a mutual understanding
of how to use the scale, they proceeded to calibrate their scoring process by attending six 90-minute class sessions
where each annotated valence and arousal values of three random students in a round-robin fashion, moving to
the next student after a 10-seconds span. After each session, we calculated observers’ degree of agreement using
different interrater annotation exchange methods (e.g., Conger Kappa, Krippendorff Alpha, Gwet’s AC1). We
then repeated the training until observers reached almost perfect agreement on recording participants’ Valence
values (0.8 Kappa coefficient) and moderate agreement on noting participants’ arousal scales on average (0.76
Kappa coefficient) [44].

From there, observers were assigned session classes and participants to follow for collecting students’ specific
behaviors, valence and arousal, and on- or off-task status. Based on our experience during training sessions, we
asked participants to sit in front of the classroom and located observers in the front corner of the classroom
(see Figure 1). At the beginning of each session, the observer left the devices on the reserved seats to wait for
students to arrive. Such an arrangement enabled observers to clearly notice students’ facial expressions and
behavior activities. Further, it minimized the students’ self-conscious effect of knowing they were being observed.
However, sitting in the front of the class and knowing the observers were present students may have altered their
behavior. Observers collected data using a customized web application that offers predefined scales for valence
and arousal and an expanding list of possible behaviors to note. There, they recorded students’ data every time
students’ behaviors changed (e.g., bodily movements took place).

Proc. ACM Interact. Mob. Wearable Ubiquitous Technol., Vol. 6, No. 3, Article 112. Publication date: September 2022.



112:8 • DiSalvo et al.

Table 2. An explanation for the valence and arousal scales we used for observation notes.

Scale Valence (negative ->positive emotion) Arousal (sleep ->wide awake)

1
Extremely unhappy,
angry,
extremely frustrated

Extremely sleepy,
already fall asleep during class

2 Seems a little upset,
unhappy, negative Tired, low energy

3 Neutral,
neither negative or positive emotion exhibited Neutral, neither energetic nor sleepy

4

Happy,
smiling,
enjoying the lecture,
etc.

Actively engaged,
interact with the class and instructors.
e.g., raise their hands during class,
answer instructors’ questions by themselves
or in front of the whole class,
nodding or shaking their heads,
smiling,
etc.

5

Extremely happy,
e.g., instructor cancelled class/quiz/exam/assignment,
students would be cheering loudly,
very excited

Actively engaged,
interact with the class and instructors.
e.g., raise their hands during class,
answer instructors’ questions by themselves
or in front of whole class,
nodding or shaking their heads, smiling, etc.

Fig. 1. Experimental setting for data collection in class B. The numbers 1 to 3 shown with red color mark the positions for
the three participants in data collection. The position 0 in red color shows where researchers sat in the classroom to observe
the participants.

3.3 Comparison to Previous Assessment Studies
Our work is motivated and inspired by previous work that demonstrated the effectiveness of GSR-based assess-
ments of student engagement. As outlined in Sec. 2 the majority of previous studies operate in a similar yet not
identical scenario. Our focus is on momentary assessments that would enable real-time interventions aiming at
(re-)engaging students in case their attention slips. For the sake of transparency and better comparability, we
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Table 3. Comparative summary of previous studies on GSR-based assessment of student engagement and ours.

Study Ref. Summary
Measuring Electrodermal Activity to Capture
Engagement in an Afterschool Maker Pro-
gram

[12] Detects moments of engagement of a single session
using the standard deviation of the given EDA data
session

Unobtrusive Assessment of Students’ Emo-
tional Engagement during Lectures Using
Electrodermal Activity Sensors

[20] Classifies entire participant sessions as engaged or
not-engaged based on various features including an
innovative momentary engagement classification
based on large deviations in the EDA data.

StartleCam: A Cybernetic Wearable Camera [41] Template-matching to identify moments of being
startled

Our Paper – Attempts to predict moments of engagement based
on Electrodermal Activity of indivdual students

contrast the most relevant previous studies that our work is based on to our study in Tab. 3. Note that more
studies have been described in the literature, yet those listed in the table are representative of the state-of-the-art
as most other systems and studies closely resemble those. Our study is the first that attempts to predict moments
of student (dis-)engagement based on EDA data.

4 DATA ANALYSIS
Based on the data collected in our study (as described in the previous section) and inspired by previous studies as
described in related work; we implemented an automated analysis system that aims at detecting correlations
between ground truth observations of student engagement and sensor data collected through the wrist-worn
Empatica E4 platform. For the sake of our exploration, we implemented and validated a range of analysis methods,
which helped us understand the data analysis problem – and why it is so challenging.

Figure 2 provides an overview of our procedure. The automated analysis of the collected sensor data with
regards to the student engagement observations requires preprocessing of both data sources. The observers’
annotations of student engagement needed to be converted into a ground truth to explore possible correlations
with the sensor-collected data (top-left in the figure; Sec. 4.1). The recorded sensor data also need to undergo
a dedicated preprocessing step that targets data cleaning and normalization, for which we followed the state-
of-the-art as described in related literature and summarized in Section 2. The former is necessary because
electro-dermal activity data and physiological signals are often noisy for they tend to be easily affected by, for
example, movements (top-right of Fig. 2; Sec. 4.2). Furthermore, we had to trim and synchronize the collected data
to accommodate for the practicalities of our study (top-center part of Fig. 2; Sec. 4.3). In a deployment all input
data are preprocessed in this manner. Subsequently, a sliding window procedure extracts analysis windows that
comprise sequences of consecutive sensor readings – ten seconds in our case, motivated by the characteristics of
EDA data that are known to change only relatively slowly over time [20]. Feature vectors are then extracted
for individual frames and forwarded to a subsequent classification backend [11]. Alternatively, heuristics-based
analysis on the raw, preprocessed sensor data are pursued allowing us to inspect the EDA data more closely to
understand the challenges of automated, momentary engagement assessment.

The actual data analysis approach explores a range of techniques previously used in related work on engagement
prediction using body-worn sensing platforms. In particular, we evaluate using classification models [15, 42, 43],
and–for the more detailed exploration of EDA data–slope-based predictive [12], and discrete level jump predictive
models [20]. Figure 2 illustrates each of these methods that all result in predictions of student (dis-)engagement
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class observation and 
ground truth generation

EDA data recording 

synchronization / 
trimming

preprocessing / 
normalization

discrete level 
prediction
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Fig. 2. Data analysis workflow from sensor input to result analysis.

that are superimposed to the ground truth on the observation/ recording timelines for individual sessions. In
what follows, we provide detailed explanations of the components of our data analysis approach. Sec. 4.5 will
also provide details of the model training and evaluation protocol that we employed for our study.

4.1 Converting Observation Data into Engagement Ground Truth
We needed to convert the observation data collected into ground truth that could determine when students
were engaged or not. To work toward our goal of finding possible correlations between sensor readings and
observation data, we explored the needed conversion from observation to ground truth from different approaches.
Each provided a new perspective for future correlation explorations. A first approach consisted of mapping the
valence and arousal scales to engagement scales. Levels 1-2 would reflect low engagement, level 3 a medium
engagement, and levels 4-5, high engagement. Another approach used the behavior data noted by our observers.
We cleaned overlapping annotations and typos in the nearly 40 specific behaviors noted by our observers into a
codebook of behaviors. We then grouped these behaviors using two classifications that could help us describe
engagement in different ways: i) engaged vs. non-engaged; and ii) engaged with/ without physical behavior
vs. non-engaged with/ without physical behavior. Table 4 provides details for those different classifications of
behavior data.
For the explorations reported in this paper, we chose binary engagement annotations that are derived from

mapping the specific behaviors listed in Table 4 to engaged and not engaged. Our trained expert annotators
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Table 4. Different classifications for students’ behaviors that served as ground truth for future correlation explorations:
engaged vs not engaged and engaged with/without physical activities vs not engaged with/without physical activities.

Engagement Physicality Specific behaviors

Engaged With physical activities

’Asking instructor question’,’Class-related discussion’,
’Laptop’,’Laughing’,’Laughing listening’,’Nodding’,
’Shaking head’, ’Nodding and shaking heads’,
’Smiling’,’Touching face’,’Writing notes’,’Laughing taking notes’,
’Answer questions’,’Respond to teacher’,’Writing and yawning’,
’Raising hand’

Without physical activities ’Listening/looking at presentation/instructors’,
’Reading notes’

Not Engaged With physical activities

’Checking phone’,’Taking picture of the slide’,
’Drinking water’,’Eat mints’,’Falling asleep’,
’Yawning’,’Looking around’,’Non-class-related chatting’,
’Talking’,’Stretching’,’Sketching’,’Coughing’,’Tie hair’,
’Playing with hair’,’Frowning’,’Clean nose’,’Making faces’

Without physical activities ’Zoning out’,’Sleep’,’Closing eyes’
’Head on hands”

observed student behaviors according to the behavior specifications given in the right part of Table 4. Even
though our eventual goal is to automatically assess student engagement at the level of granularity of the specific
behaviors as listed in the table, for this study we concentrate on the first, most fundamental assessment – are
students engaged or not, and when does their engagement change. Accordingly, we converted detailed behavior
observations into a binary ground truth as per the operational definitions given in Table 4.

4.2 Sensor Data Preprocessing
The Empatica E4 sensor readings cover a range of signals, including galvanic skin response (GSR, also referred to as
electrodermal activities, EDA), heart rate and heart rate variability (inter heart-)beat interval, IBI), skin temperature,
and accelerometry. Motivated by related work on affective computing [65] and practical considerations such as
ease of use and objectivity of sensor readings, we utilize EDA as the main data source for our study.

Sensor data preprocessing aims at cleaning up the recorded data with regards to noise or any other detrimental
artifacts that the sensors may pick up [32] in a recording session in the classroom. We first identify excessive
arm motions by analyzing signal energy from the tri-axial accelerometer stream and eliminate portions that
breach a filtering threshold, i.e., we eliminate portions of the sensor data from further processing for which the
measured acceleration magnitude is more than two standard deviations away from the session mean. It is well
known that clean EDA readings require tight skin contact with the sensor and that motion artifacts are often
detrimental to the quality of the sensor data [20, 43, 67]. Consequently, our thresholding approach effectively
eliminates such motion artifacts. Furthermore, the EDA signals are smoothed through a kernel-based median
filter with the kernel size set to E4 sampling rate plus one the filter length itself set to five samples [7]. This filter
helps further eliminating signal artifacts that are not of relevance for our analysis but preserves the typical shape
of EDA signals.

Considering the value of EDA signals recorded from different students may differ significantly [51], the signal
is then range-normalized using min-max normalization, which transforms the minimum value of the signal to 0
and maximum value of the signal to 1 and transforms all the values in between accordingly.

The GSR data can contain important information associated with changes in emotional engagement. To extract
such features, we decomposed the signal into tonic and phasic components [8, 20, 43, 67]. The background tonic
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component reflects the skin conductance level (SCL), which indicate general changes in autonomic arousal. The
rapid phasic components describes the skin conductance response (SCR), which suggests changes associated
with a stimulus. In this work, we applied one of the most widely used cvxEDA method by Grecoet et al. [36],
which uses convex optimization to decompose the signal. Inspired by the feature extraction in [20], we calculated
the general arousal features from the original GSR signal, SCL, and SCR data.

4.3 Data Trimming and Synchronizing for Data Collection
In order to set up our data collection study with minimal interruptions to the normal class routing, all wrist-worn
sensing platforms (Empatica E4) were configured such that they started recording before the students arrive in
class, and continue to do so until after the students had left. We handed over the devices before students came to
class and collected them after the class had finished.

This protocol, while practical, results in portions of the data not being usable because they are covering time
periods that are not related to the study. Furthermore, we recognize that students’ level of excitement is often
high when first entering the class and that they often start moving more towards the end than during the class.
Consequently, these portions of the data may also not be of highest relevance for our study. As such, we removed
the first and the last five minutes from our analysis.

We synchronized the start-times for both sensor and observation data to the first annotation time that observers
recorded as valid.

4.4 Predicting Student Engagement from Sensor Data
The overarching goal of our study was to explore to what extent EDA sensor data collected through a wrist-
worn device can be used to automatically recognize changes in student engagement. We particularly sought to
automatically read the room such that teachers and human-computer interfaces in online classrooms could adapt
to student engagement in the moment. This endeavor is appealing, especially for online learning where students
have poor video quality, will not turn on their cameras, or the video conferencing system will not allow teachers
to see all of the students.

After preprocessing, trimming, and synchronization, as described in the previous sections, the recorded data is
now fed into our analysis back-end that aims at replicating the ground truth observations of student engagement
with technical means. We explore the utility of three assessment methods that have been described in related
work: i) Classification Methods; ii) Slope-based Predictive Models [12]; and iii) Discrete Level Jump Predictive
Model [20]. Figure 3 illustrates the three different methods using an exemplary recording session. Figure 3a
shows processed EDA data (blue) for an exemplary recording session, along with processed, binary ground truth
annotation regarding engaged vs not engaged overlaid in orange.

4.4.1 Classification Models. Based on the preprocessed EDA data, which are subsequently segmented into
ten-second, non-overlapping analysis windows, can extract a feature representation that converts our sensor
data (from individual analysis frames) into a format that can be used for analysis using machine learning based
classification backends. Our features are adopted from previous work in the field that validated signs of general
arousal [15, 42, 43]. This feature set is computed on a ten-second moving window based on the EDA signal, the
SCL data, and the SCR data. The SCL and SCR data are the decomposition of the EDA signal into the tonic and
phasic components of the EDA signal respectively, (as described in Sec. 4.2). The features extracted for each
analysis window are as follows: i) mean and standard deviation of EDA signal; ii) mean and standard deviation of
SCL signal; iii) mean and standard deviation of SCR signal; iv) number of peaks in EDA signal; v) number of
peaks in SCL signal; vi) number of peaks in SCR signal; vii) average peak amplitude of EDA signal; ix) average
peak amplitude of SCL signal; x) average peak amplitude of SCR signal; xi) area under the curve for EDA signal;
xii) area under the curve for SCL signal; and xiii) area under the curve for SCR signal. Utilizing this feature set
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(a) Processed EDA data for an exemplary session (blue)
with binary ground truth annotation overlaid (orange).

(b) Quintiles defined by equal numbers of observa-
tions(red lines) defined levels of engagement.

(c) Quintiles defined by equal length (red lines) defined
levels of engagement.

(d) Slope-based EDA analysis of student engagement.

Fig. 3. Illustration of data analysis methods explored for predicting student engagement from sensor data.

as the input for the classification models, we evaluate the four main categories of statistical classifiers, namely:
i) instance based learning – k Nearest Neighbors; ii) descriptive modeling – Naive Bayes; iii) discriminative
learning – Decision tree and its ensemble variant, i.e., Random Forests; and iv) kernel based learning – Support
Vector Machines (SVM). Note that the limited size of our dataset renders the use of contemporary modeling
techniques such as deep neural networks infeasible for our exploration study. The binary classification models
take feature representations of (portions of) sensor data as input and classify these portions as either engaged or
not engaged. Each ten-second window of a recording session, which typically runs for about 65 minutes, i.e., the
standard lecture duration, is associated with binary ground truth annotation regarding student engagement as
defined in Sec. 4.1.

4.4.2 Slope-based Predictive Model. Ideally, we would develop a fully automated system for which we have
implemented the data analysis pipeline as described above. In order to better understand the challenges of the
analysis task, we have also implemented two alternatives to the ML-based classification backends, in which we
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utilize the raw, yet preprocessed, sensor data for direct, heuristics-based analysis. Again, our analysis methods
are inspired by related work in the field that suggests that our overarching goal of automatically "reading the
room" may be achievable.
For the first variant, EDA data is analyzed based on the slope of the signal where positive slopes indicate

arousal and negative slopes indicate unarousal. To ensure that not all positive slope segments are defined as
arousal a threshold is set for each session that is analyzed. Any data point that is more than one standard deviation
away from the mean in either direction is considered significant and thus indicating a relevant slope (positive, or
negative). All positive slopes, as defined above, are then considered moments of arousal and all other data points
are considered unaroused moments, which is in line with previous work in the field [12].

4.4.3 Discrete Level Jump Predictive Model. The second variant of non-classifier based data analysis is based on
the definition of levels of engagement as proposed by Di Lascio [20] The preprocessed EDA signal is used to
determine a total of five discrete levels of engagement. These five levels are used by the predictive model to find
moments at which the signal changes level and identifies these moments as moments of arousal or unarousal
determined by whether the signal goes from a lower level to a higher level or vice versa respectively.
Using piecewise aggregate approximation [50], the dimensionality of the EDA data is reduced before further

analysis. Piecewise aggregate approximation takes an input signal and takes a specified segment window of the
signal and calculates the mean of that segment. This mean value is then used as the new value for that portion of
the signal, which results in effective dimensionality reduction. In our case, we reduce the dimensionality of the
signal by a factor of ten. Once the EDA data from a session is converted, we identify five discrete levels for each
session as per related work [20]: 1) very low; 2) low; 3) normal 4) high; and 5) very high. Using these levels we
predict momentary cognitive engagement as moments when the participant moves from one engagement level
into a higher one and moments of disengagement as moments where participants move from a one engagement
level into a lower one. In order to determine the five discrete levels for each of the sessions we explore two
methods: i) levels based on number of observations; and ii) levels based on signal value. Based on these prediction
we can then perform the comparison to the binary ground truth annotation (Sec. 4.1) in our case study. Figure 3b
and 3c illustrates the use of our discrete level jump predictive model for engagement analysis from EDA data.
Ground truth annotation for the non-classifier based approaches is provided based on engagement changes,

i.e., moments (in form of the previously mentioned ten second signal windows) where changed from engaged
to disengaged, or the other way around, are observed (again, as per the operational definitions for behavior
observations and the procedure for obtaining the ground truth annotation as described in Sec. 4.1).

4.5 Evaluation Protocol
The ultimate application case for our work is to provide students with commodity devices such as the Empatica
E4 for recording EDA data, and to conduct real-time sensor data analysis that directly informs either a human
teacher or feeds into a human-computer interface with the goal of adapting content delivery "on-the-fly" and as
required by individual learners. This is how teachers in classical instruction scenarios read the room and respond
to momentary demands. As such, the obvious evaluation protocol for an automated analysis procedure would be
based on a student-independent model that is deployed "as is". Such a model would be derived from large amount
of annotated sample data, collected from many different students.

Consequently, our initial evaluations of the machine-learning based recognition models are based on a leave-
one-participant-out (LOPO) protocol, in which we hold out the data for one participant to test on, and use the
data from the remaining ten participants in our dataset for model training. We report results for all participants,
i.e., each participant’s data is held out once, along with total averages.

Arguably, the LOPO evaluation protocol is the most challenging one because it requires a recognition model to
generalize to unseen participants [66]. In addition to the non-personalized LOPO evaluation protocol, we also
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explore to what extent some amount of personalization affects the machine-learning based models. To do so,
we used a leave-one-session-out (LOSO) protocol in which we tested the models on data from individual class
sessions for a participant while we trained the models with the data from all other participants (all sessions) plus
all sessions of the target participant minus the chosen test session. We iterate through all possibilities to leave
out individual sessions and average the results on a per participant basis.
Our dataset is imbalanced with regard to the distribution of engaged vs. non-engaged portions (see Tab. 5

for details). It is well known that such class imbalance may have a detrimental impact on training effective
machine learning based recognition systems [33, 66]. To counter possible negative effects, we conducted additional
experiments in which we applied a random undersampling technique to counter the class imbalance [33] (training
data only). Results for the machine-learning based methods are reported separately for both LOPO and LOSO
evaluations – and contrasted to the results from using classifiers that were trained directly on the imbalanced
datasets.
The two non-machine leaning based methods do not require a training step because the slope and jump

estimations are conducted based on a global heuristic (as informed by previous work in the field [12, 20]). As
such, evaluation results are reported for entire sessions where the objective is to correctly identify those ten
second windows in which student engagement changes as per the ground truth definition.

We evaluated the prediction results through both accuracy and F1 scores. The former is used to be consistent
with previous work in the field. However, as mentioned above our dataset exhibits imbalanced class distribution
for which F1 scores better reflect the true recognition capabilities. The presentation of our results also includes
breakdowns of the class distributions, which provides more insights into the underlying data and helps us
understand the challenges of the analysis task.

5 RESULTS
Sec. 4.5 described the data collection and annotation protocol. Our analysis study is based on observations of
eight class sessions for eleven students that highly trained human observers annotated. Ground truth annotations
were generated as described in Sec. 4.1, and the sensor data was analyzed through the methods described in
the previous section. For classifier training, optimization, and validation we employed the protocol described in
Sec. 4.5. For contextualization we also report classification results achieved using two baseline classifiers: i) a
"Random" classifier that assigns ’engaged’ or ’disengaged’ according to a uniform random distribution; and ii) a
"Biased Random" classifier, which assigns the majority class (from training) to all test windows.

5.1 Leave-One-Participant-Out (LOPO) Evaluation of ML-Based Analysis
Tables 6 and 7 show the results for the LOPO-based evaluation of our ML-based classifiers without and with class
balancing during model training, respectively. We report results for each of the five explored analysis models in
terms of accuracy and (macro) F1 score, along with averages over all participants and standard deviations.

It can be seen that, on average, none of the classification approaches lead to satisfying analysis results. Across
the sessions, we see F1 scores of less than 45%, which indicates that–much to our surprise and in contrast to
what related work suggests–the automated, momentary assessment of student engagement through wrist-worn
EDA sensors need further evaluation. To contextualize this finding, we emphasize again the rigor that went into
our data collection and especially the annotation procedure. We employed state-of-the-art processing pipelines
(as suggested by related work) that are deemed suitable for the required data analysis. It is widely known that
the activity recognition chain (ARC [11]), a variant of which our approach essentially resembles, represents
the de-facto standard for such analysis scenarios. More sophisticated, recent analysis techniques such as Deep
Learning based methods [38, 57] are not directly applicable in our envisioned scenario due to training data
limitations and the highly idiosyncratic behaviors and EDA responses of individual students.
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Table 5. Class distribution (engaged / non-engaged) in our dataset (listed per session and averaged per participant).

Participant / Session #Engaged Windows #Dis-Engaged Windows
P1-1 158 87
P1-2 236 132
P1-3 238 50
P1-4 194 70

P1 total 826 339
P2-1 190 61
P2-2 316 44
P2-3 264 109
P2-4 259 49

P2 total 1029 263
P4-1 143 64
P4-2 158 19
P4-3 205 9
P4-4 208 15

P4 total 714 107
P5-1 163 46
P5-2 156 21
P5-3 174 23
P5-4 184 36

P5 total 677 126
P7-1 200 27
P7-2 191 32
P7-3 163 38
P7-4 198 11

P7 total 752 108
P8-1 207 136
P8-2 257 92
P8-3 228 98

P8 total 692 326
P9-1 309 30
P9-2 300 52
P9-3 275 65

P9 total 884 147
P11-1 200 24
P11-2 189 36
P11-3 158 45
P11-4 173 36

P11 total 720 141
Avg 209.8 51.9
Std 48.35 34.02

Even the artificial balancing of the training data does not lead to noteworthy improvements: The results in Tab.
7 are more or less the same as when not balanced (Tab. 6).
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Table 6. Results for discrimination between engaged and non-engaged episodes in our student dataset for machine-learning
based classifiers trained without class balancing and following a leave-one-participant-out (LOPO) evaluation protocol.

Test Bayes K-NN DT RF SVM Random Biased Random
Participant Acc F1 Acc F1 Acc F1 Acc F1 Acc F1 Acc F1 Acc F1

P1 0.32 0.3 0.67 0.46 0.64 0.51 0.68 0.44 0.71 0.41 0.49 0.47 0.71 0.41
P2 0.8 0.45 0.73 0.47 0.68 0.48 0.74 0.46 0.8 0.44 0.48 0.44 0.8 0.44
P4 0.76 0.46 0.79 0.51 0.71 0.5 0.78 0.48 0.87 0.47 0.53 0.44 0.87 0.47
P5 0.82 0.49 0.78 0.52 0.67 0.48 0.71 0.46 0.84 0.46 0.5 0.43 0.84 0.46
P7 0.87 0.46 0.8 0.53 0.7 0.47 0.83 0.5 0.88 0.47 0.52 0.44 0.88 0.47
P8 0.68 0.42 0.67 0.46 0.63 0.48 0.67 0.44 0.68 0.4 0.47 0.46 0.68 0.4
P9 0.74 0.5 0.75 0.49 0.69 0.5 0.77 0.5 0.86 0.46 0.5 0.43 0.86 0.46
P11 0.84 0.46 0.78 0.5 0.7 0.49 0.79 0.47 0.84 0.46 0.48 0.43 0.84 0.46
Avg 0.73 0.44 0.75 0.49 0.68 0.49 0.75 0.47 0.81 0.45 0.50 0.44 0.81 0.45
Std 0.18 0.06 0.05 0.03 0.03 0.01 0.06 0.02 0.08 0.03 0.02 0.01 0.07 0.03

Table 7. Results for discrimination between engaged and non-engaged episodes in our student dataset for machine-learning
based classifiers trained with class balancing and following a leave-one-participant-out (LOPO) evaluation protocol.

Test Bayes K-NN DT RF SVM Random Biased Random
Participant Acc F1 Acc F1 Acc F1 Acc F1 Acc F1 Acc F1 Acc F1

P1 0.29 0.25 0.48 0.46 0.5 0.47 0.49 0.46 0.39 0.39 0.51 0.49 0.29 0.23
P2 0.25 0.24 0.51 0.45 0.49 0.43 0.51 0.46 0.5 0.47 0.49 0.45 0.2 0.17
P4 0.19 0.19 0.51 0.42 0.49 0.4 0.48 0.41 0.79 0.58 0.49 0.42 0.13 0.11
P5 0.21 0.2 0.53 0.46 0.5 0.43 0.41 0.37 0.42 0.37 0.52 0.46 0.16 0.14
P7 0.19 0.19 0.51 0.43 0.55 0.44 0.51 0.43 0.49 0.41 0.49 0.42 0.12 0.11
P8 0.6 0.5 0.52 0.49 0.56 0.52 0.52 0.5 0.62 0.49 0.5 0.48 0.32 0.24
P9 0.18 0.17 0.49 0.42 0.49 0.4 0.46 0.41 0.38 0.34 0.48 0.4 0.14 0.13
P11 0.55 0.45 0.5 0.42 0.47 0.4 0.46 0.4 0.52 0.43 0.49 0.42 0.16 0.14
Avg 0.31 0.27 0.51 0.44 0.51 0.44 0.48 0.43 0.51 0.44 0.50 0.44 0.19 0.16
Std 0.17 0.13 0.02 0.03 0.03 0.04 0.04 0.04 0.14 0.08 0.01 0.03 0.07 0.05

5.2 Leave-One-Session-Out (LOSO) Evaluation of ML-Based Analysis
Tables 8 and 9 show the results for the LOSO-based evaluation of our ML-based classifiers without and with class
balancing during model training, respectively. Again, we report results for each of the five explored analysis
models in terms of accuracy and (macro) F1 score and average over the results.

We have to conclude that even personalization does not lead to improvements in the classification performance.
Again, balancing the class distributions had no noticeable effect on the capabilities of our machine learning based
classifiers.

5.3 Evaluation of Non-ML-Based Analysis
In an effort to understand the reasons for the mediocre classification performance, we conducted a second set of
experiments in which we relaxed the constraints on the ground truth annotation. Instead of aiming for accurate
classification of each ten-second sensor data window into engaged or disengaged, we now look at detecting when
students change from engaged to disengaged and vice versa. We argue that this scenario also resembles a variant
of in-class practices where instructors at some point notice changes to engagement and would respond with
adaptation to their teaching accordingly. The automated analysis is now focused on detecting those changes. We
employ the non-classifier based approaches described in detail in Sections 4.4.2 and 4.4.3. These methods analyze
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Table 8. Results for discrimination between engaged and non-engaged episodes in our student dataset for machine-learning
based classifiers trained without class balancing and following a leave-one-session-out (LOSO) evaluation protocol.

Test Bayes K-NN DT RF SVM Random Biased Random
Participant Acc F1 Acc F1 Acc F1 Acc F1 Acc F1 Acc F1 Acc F1

P1-1 0.62 0.38 0.61 0.43 0.58 0.45 0.6 0.39 0.64 0.39 0.53 0.53 0.64 0.39
P1-2 0.58 0.38 0.62 0.48 0.57 0.48 0.61 0.45 0.64 0.39 0.55 0.54 0.64 0.39
P1-3 0.18 0.18 0.75 0.43 0.73 0.48 0.81 0.52 0.83 0.45 0.47 0.41 0.83 0.45
P1-4 0.73 0.42 0.71 0.53 0.66 0.52 0.67 0.46 0.73 0.42 0.51 0.47 0.73 0.42
P2-1 0.76 0.43 0.71 0.47 0.65 0.5 0.72 0.47 0.76 0.43 0.47 0.43 0.76 0.43
P2-2 0.47 0.43 0.82 0.48 0.76 0.5 0.82 0.46 0.88 0.47 0.49 0.39 0.88 0.47
P2-3 0.68 0.41 0.67 0.47 0.64 0.5 0.7 0.49 0.71 0.41 0.47 0.45 0.71 0.41
P2-4 0.82 0.5 0.72 0.45 0.7 0.55 0.73 0.47 0.84 0.46 0.47 0.4 0.84 0.46
P4-1 0.69 0.41 0.63 0.47 0.58 0.44 0.65 0.49 0.69 0.41 0.48 0.46 0.69 0.41
P4-2 0.88 0.47 0.84 0.59 0.71 0.49 0.8 0.45 0.89 0.47 0.46 0.38 0.89 0.47
P4-3 0.86 0.49 0.86 0.46 0.73 0.46 0.9 0.52 0.96 0.49 0.52 0.39 0.96 0.49
P4-4 0.74 0.44 0.86 0.56 0.77 0.45 0.82 0.49 0.93 0.48 0.55 0.43 0.93 0.48
P5-1 0.78 0.46 0.69 0.47 0.66 0.49 0.74 0.47 0.78 0.44 0.46 0.41 0.78 0.44
P5-2 0.88 0.47 0.78 0.5 0.65 0.42 0.72 0.42 0.88 0.47 0.53 0.41 0.88 0.47
P5-3 0.87 0.47 0.85 0.49 0.69 0.48 0.66 0.44 0.88 0.47 0.53 0.42 0.88 0.47
P5-4 0.8 0.44 0.77 0.49 0.7 0.45 0.81 0.53 0.84 0.46 0.54 0.47 0.84 0.46
P7-1 0.87 0.55 0.81 0.56 0.76 0.55 0.83 0.5 0.88 0.47 0.45 0.38 0.88 0.47
P7-2 0.86 0.46 0.79 0.44 0.67 0.47 0.82 0.49 0.86 0.46 0.5 0.42 0.86 0.46
P7-3 0.78 0.44 0.75 0.51 0.67 0.48 0.78 0.5 0.81 0.45 0.49 0.45 0.81 0.45
P7-4 0.92 0.48 0.89 0.55 0.79 0.46 0.9 0.52 0.95 0.49 0.48 0.34 0.95 0.49
P8-1 0.6 0.38 0.59 0.45 0.58 0.48 0.59 0.43 0.6 0.38 0.47 0.47 0.6 0.38
P8-2 0.7 0.43 0.64 0.47 0.6 0.45 0.63 0.43 0.74 0.42 0.51 0.47 0.74 0.42
P8-3 0.7 0.41 0.65 0.43 0.63 0.5 0.68 0.47 0.7 0.41 0.5 0.48 0.7 0.41
P9-1 0.53 0.44 0.76 0.48 0.73 0.53 0.75 0.48 0.91 0.48 0.49 0.39 0.91 0.48
P9-2 0.85 0.46 0.75 0.48 0.65 0.45 0.74 0.44 0.85 0.46 0.48 0.42 0.85 0.46
P9-3 0.8 0.45 0.75 0.53 0.69 0.54 0.76 0.46 0.81 0.45 0.49 0.44 0.81 0.45
P11-1 0.86 0.52 0.79 0.48 0.74 0.48 0.85 0.51 0.89 0.47 0.47 0.38 0.89 0.47
P11-2 0.84 0.46 0.75 0.46 0.66 0.44 0.77 0.49 0.84 0.46 0.5 0.42 0.84 0.46
P11-3 0.77 0.43 0.69 0.46 0.67 0.51 0.74 0.48 0.78 0.44 0.47 0.42 0.78 0.44
P11-4 0.82 0.48 0.77 0.47 0.67 0.48 0.78 0.51 0.83 0.45 0.53 0.46 0.83 0.45
Avg 0.74 0.44 0.74 0.48 0.68 0.48 0.75 0.47 0.81 0.45 0.49 0.43 0.81 0.45
Std 0.15 0.06 0.08 0.04 0.06 0.03 0.08 0.03 0.09 0.03 0.03 0.04 0.09 0.03

the raw, preprocessed EDA data for significant changes across different levels of discretization. Table 10 lists the
detection results for this second set of experiments, again for each session and averaged over the entire dataset.
Analysis results are given as accuracy values (for consistency with previous work)[20]and as F1 scores, which is
the more realistic measure for the severely imbalanced distribution of engagement changes (typically between 10
and 30 instances in standard 65-minute sessions, i.e., some 390 ten-second data windows).

6 DISCUSSION
As education has moved to online classroom environments, including MOOCs and remote learning due to COVID,
there is a desire to help teachers read the room, to understand students’ emotional engagement levels, and adjust
their teaching accordingly.. Previous work in the broader field of affective computing in general, and mobile and
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Table 9. Results for discrimination between engaged and non-engaged episodes in our student dataset for machine-learning
based classifiers trained with class balancing and following a leave-one-session-out (LOSO) evaluation protocol.

Test Bayes K-NN DT RF SVM Random Biased Random
Participant Acc F1 Acc F1 Acc F1 Acc F1 Acc F1 Acc F1 Acc F1

P1-1 0.34 0.32 0.45 0.4 0.53 0.48 0.41 0.36 0.4 0.33 0.48 0.47 0.36 0.26
P1-2 0.35 0.28 0.48 0.48 0.51 0.48 0.44 0.43 0.37 0.34 0.48 0.47 0.36 0.26
P1-3 0.16 0.15 0.5 0.45 0.55 0.46 0.53 0.47 0.24 0.24 0.51 0.46 0.17 0.15
P1-4 0.29 0.25 0.52 0.49 0.58 0.54 0.55 0.53 0.32 0.29 0.45 0.42 0.27 0.21
P2-1 0.31 0.3 0.57 0.53 0.49 0.47 0.45 0.43 0.55 0.54 0.5 0.47 0.24 0.2
P2-2 0.16 0.15 0.52 0.38 0.54 0.41 0.55 0.41 0.51 0.39 0.5 0.42 0.12 0.11
P2-3 0.34 0.3 0.46 0.44 0.55 0.53 0.49 0.48 0.58 0.52 0.54 0.52 0.29 0.23
P2-4 0.19 0.17 0.48 0.41 0.48 0.44 0.43 0.38 0.2 0.19 0.49 0.41 0.16 0.14
P4-1 0.31 0.27 0.55 0.51 0.58 0.57 0.48 0.47 0.3 0.23 0.44 0.42 0.31 0.24
P4-2 0.2 0.2 0.51 0.45 0.55 0.45 0.49 0.41 0.36 0.33 0.47 0.38 0.11 0.1
P4-3 0.09 0.09 0.53 0.38 0.48 0.35 0.44 0.33 0.84 0.53 0.51 0.39 0.04 0.04
P4-4 0.26 0.23 0.47 0.37 0.48 0.38 0.43 0.32 0.13 0.13 0.47 0.38 0.07 0.06
P5-1 0.21 0.17 0.44 0.41 0.49 0.44 0.46 0.42 0.41 0.4 0.43 0.4 0.22 0.18
P5-2 0.59 0.41 0.46 0.39 0.44 0.38 0.39 0.34 0.36 0.32 0.54 0.46 0.12 0.11
P5-3 0.16 0.15 0.51 0.38 0.4 0.35 0.42 0.34 0.21 0.21 0.51 0.42 0.12 0.1
P5-4 0.73 0.42 0.5 0.42 0.5 0.42 0.48 0.42 0.73 0.42 0.51 0.42 0.16 0.14
P7-1 0.79 0.46 0.52 0.44 0.56 0.47 0.48 0.42 0.64 0.52 0.56 0.46 0.12 0.11
P7-2 0.25 0.25 0.52 0.44 0.51 0.42 0.45 0.39 0.51 0.43 0.48 0.4 0.14 0.13
P7-3 0.28 0.28 0.52 0.46 0.55 0.47 0.46 0.43 0.4 0.36 0.54 0.49 0.19 0.16
P7-4 0.42 0.33 0.57 0.39 0.56 0.41 0.5 0.38 0.55 0.39 0.51 0.4 0.05 0.05
P8-1 0.56 0.4 0.54 0.53 0.51 0.5 0.5 0.5 0.44 0.39 0.48 0.48 0.4 0.28
P8-2 0.26 0.24 0.46 0.44 0.41 0.39 0.42 0.41 0.6 0.56 0.42 0.4 0.26 0.21
P8-3 0.36 0.34 0.52 0.5 0.5 0.48 0.5 0.49 0.59 0.49 0.48 0.45 0.3 0.23
P9-1 0.11 0.11 0.5 0.4 0.53 0.4 0.38 0.33 0.24 0.24 0.48 0.38 0.09 0.08
P9-2 0.77 0.47 0.44 0.39 0.52 0.43 0.41 0.38 0.46 0.36 0.49 0.42 0.15 0.13
P9-3 0.24 0.23 0.49 0.44 0.59 0.52 0.47 0.43 0.46 0.43 0.48 0.42 0.19 0.16
P11-1 0.58 0.43 0.49 0.39 0.46 0.35 0.43 0.35 0.45 0.33 0.5 0.41 0.11 0.1
P11-2 0.7 0.5 0.52 0.43 0.53 0.44 0.54 0.47 0.56 0.44 0.52 0.47 0.16 0.14
P11-3 0.61 0.49 0.52 0.48 0.51 0.46 0.48 0.44 0.56 0.5 0.47 0.45 0.22 0.18
P11-4 0.46 0.44 0.55 0.47 0.5 0.41 0.52 0.48 0.71 0.52 0.47 0.43 0.17 0.15
Avg 0.37 0.29 0.50 0.44 0.51 0.44 0.47 0.41 0.46 0.38 0.49 0.43 0.19 0.15
Std 0.20 0.12 0.04 0.05 0.05 0.06 0.05 0.06 0.17 0.12 0.03 0.04 0.09 0.06

ubiquitous computing in particular, established that it is possible to automatically recognize affect and various
forms of engagement from EDA data recorded through wrist-worn sensing platforms.[12, 20, 28] However,
most of this previous work has focused on whole class period assessments rather than the momentary analysis.
Our envisioned automated reading the room scenario requires us to measure moment-by-moment emotional
engagement.
While previous work suggests and encouraged us that such an endeavor seems possible, our study unveiled

that the problem is more complex than one would expect. We have carefully designed and conducted a case study
in which we followed best practices as documented in related work regarding sensor data recording and analysis.
Our trained observers diligently annotated student engagement in class based on detailed operational definitions.
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Table 10. Results of automated analysis of student engagement using our heuristics based approach. Sessions were manually
annotated by our trained expert observers according to the operational definitions specified in Table 4.4.1. Behavior annota-
tions were then subsequently converted into engagement changes indications, either from disengaged to engaged or vice
versa. Accuracy and F1 scores listed for each session (# engagement changes given in parentheses) and for each of the three
analysis methods as described in Sections 4.4.2 and 4.4.3.

Session Slope Jump Jump 2
(# engagement changes) Acc F1 Acc F1 Acc F1

P1-S1 (7) 0.94 0.32 0.96 0.33 0.98 0.33
P1-S2 (12) 0.94 0.32 0.91 0.32 0.96 0.33
P1-S3 (9) 0.94 0.32 0.94 0.32 0.96 0.33
P1-S4 (14) 0.9 0.32 0.93 0.32 0.95 0.35
P2-S1 (13) 0.89 0.32 0.89 0.33 0.92 0.33
P2-S2 (9) 0.95 0.32 0.94 0.32 0.96 0.33
P2-S3 (21) 0.86 0.33 0.91 0.32 0.93 0.32
P2-S4 (15) 0.91 0.32 0.91 0.34 0.95 0.32
P4-S1 (15) 0.91 0.32 0.87 0.34 0.95 0.33
P4-S2 (11) 0.88 0.31 0.87 0.33 0.9 0.34
P4-S3 (11) 0.92 0.32 0.89 0.31 0.94 0.32
P4-S4 (11) 0.94 0.32 0.91 0.35 0.95 0.35
P5-S1 (18) 0.86 0.34 0.95 0.33 0.96 0.33
P5-S2 (12) 0.91 0.32 0.9 0.34 0.94 0.32
P5-S3 (13) 0.92 0.32 0.94 0.32 0.96 0.33
P5-S4 (27) 0.84 0.34 0.9 0.33 0.93 0.32
P7-S5 (21) 0.86 0.38 0.89 0.31 0.92 0.32
P7-S6 (17) 0.88 0.36 0.83 0.31 0.87 0.31
P7-S7 (21) 0.85 0.31 0.9 0.33 0.92 0.34
P7-S8 (9) 0.89 0.31 0.85 0.31 0.89 0.31
P8-S5 (28) 0.87 0.36 0.96 0.33 0.97 0.33
P8-S6 (11) 0.94 0.32 0.94 0.32 0.96 0.33
P8-S7 (20) 0.91 0.36 0.86 0.32 0.93 0.32
P9-S5 (11) 0.94 0.32 0.92 0.32 0.95 0.33
P9-S6 (11) 0.89 0.32 0.92 0.32 0.93 0.33
P9-S7 (17) 0.89 0.31 0.92 0.34 0.94 0.32
P11-S5 (17) 0.85 0.31 0.85 0.32 0.87 0.33
P11-S6 (17) 0.84 0.31 0.85 0.33 0.88 0.34
P11-S7 (29) 0.81 0.33 0.83 0.31 0.87 0.33
P11-S8 (25) 0.84 0.31 0.7 0.3 0.79 0.3

Avg .89 .33 .90 .32 .93 .33
Std .0027 .0025 .0235 .0057 .0173 .0045

Our results show that current approaches may not be able to accurately assessing student engagement in a
momentary manner.
In what follows, we discuss and contextualize our findings and offer suggestions on what should be future

directions of research and development that may get us, as a community, closer to the goal of automated,
momentary assessment of student engagement in the classroom.
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6.1 From Prediction to Exploration
The emerging research to measure emotional engagement through wearable technology has grounded the
assessment of these systems through self-reporting periodically during class or at the end of class. These
approaches to assessing tend to miss the whole story of student engagement. They focus on predicting if students
perceived engagement happened after the class has taken place. This is useful for a reflective assessment of
teachers’ effectiveness, but will not provide just-in-time data to teachers in online classrooms. We recognize that
the physical classrooms used in this study provides a different context than online classes, and computer science
classes are a specific context. Nevertheless, the lack of correlation found may be transferable to other settings
and should be investigated.

Leveraging research from the learning sciences [56], we sought to emulate how teachers measure if students
are on-task or off-task, and emotionally engaged. The goal was to explore how sensor data could be used in the
moment to improve educational outcomes. Our study’s exploratory approach highlights two aspects to consider
in conducting studies evaluating sensor data’s capabilities that respond to real classroom contexts. First, the
definition, collection, and use of ground truth data should be tied to the goal of measurements. Second, the
involvement of educational experts in devising, monitoring, and analyzing the collected data is necessary for
identifying the objectives of the research and providing methodological expertise beyond analysis of sensor data.

6.2 Reading the Room: Are We There Yet?
Our analysis demonstrates no correlation between the moment-by-moment observations that a teacher might
make in the classroom and the wearable sensor data collected. This calls into question the effectiveness of current
wearable sensors in detecting student engagement in classroom settings that might be useful for teachers. This
limitation might be tied to the context of the classroom. First, the wearable sensor data was able to measure affect,
however, it was not necessarily tied to on-task or off-task affect in the classroom. For example, while a student
might be emotionally engaged during class, the sensors could not tell if that engagement came from the professor’s
performance or unrelated tasks, such as reading an email. Second, it is unclear if the physiological signs can
measure the small changes in student affect during a course. For example, if a student is mildly interested then
becomes a little less interested, it is not clear that any physical changes would occur that would be measurable
with current sensors. We must also consider that the observations, not the sensors, were not accurate information
about student engagement; students, who knew they were being observed and sitting in the front of the classroom,
could have been putting on a performance to act engaged or not.

6.3 Towards Future Evaluation Studies
This work calls into question if the current state of wearable sensors accurately track student engagement in
a moment-by-moment manner. This suggests that we need to seek other methods of validation for student
engagement and discuss if there are other alternatives for remote sensing that will be helpful to teachers during
class time.
We could pursue video-based approaches that track facial expressions, hand gestures, and postures as other

researchers have demonstrated better success in measuring student engagement with these tools in controlled
settings. Turning on cameras in classes also may increase engagement because students who are monitored are
more likely to stay on task [69]. However, videos in online classrooms have significant barriers. Technically the
quality of the video dramatically changes its usability. Many of the studies on student engagement detection
using video rely on tightly controlled environments where the quality of the camera and lighting are consistent
[63]. From our experience with teaching online, we observed students are in public spaces, family living rooms,
or their car (hopefully parked) where the video quality was poor or frequently interrupted. In online video
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conferencing systems, we often observe something as simple (and uncontrollable) as cloud coverage dramatically
decreasing the quality of videos.
Students’ concerns with privacy will also likely limit the functionality of such video-based sensors. During

remote learning due to COVID-19, many students turned off their cameras; the online video format made them
uncomfortable about how they looked or what their personal space might communicate about them [55]. This is
particularly true for students from low socio-economic backgrounds. In addition, the work that has sought to
use videos in online classes has been used primarily as a predictive measure of student performance or teacher
engagement, not as a measure to improve engagement in the moment [54].

There may be ways to augment the information received from wearable sensor data with multi-modal inputs
from behavior data, such as clickstream data [59]. Previous work has focused on clickstream data for prediction
[17] and helping students with self-regulation [48]. This work is promising in assisting MOOC students in
managing their learning. However, this work has not focused on just-in-time feedback to assist teachers in live
lectures and is often noisy and difficult for teachers to interpret and use to improve their courses [6]. However, by
combining clickstream data with wearable sensor data we may better be able to determine on-task and off-task
behavior and emotional engagement.

Finally, we need to question if the emotional sensing that teachers do is even related to the physiological data
that wearable devices can provide. Are there other measures that can be used that might yield more effective
data for teachers? Should we conduct interviews with teachers and educational experts on classroom behavior to
concretely identify the methods that current teachers use?

6.4 Limitations
There are a number of limitations to this work. The use of observational methods, while accepted in the field of
intelligent tutors, have been called into question in psychology research because of the ability of students to fake
engagement or perhaps look uninterested even if they are engaged. For the granularity of our study, seeking
moment-by-moment measurements of engagement, we do not have a better tool to use. However, the work would
be more robust with a corresponding retrospective self-assessment or recall interview to triangulate the findings.

We also recognize that the physical classroom and the context of computer science likely impact the way that
people experience, behave, and express their emotions. It may also be that the presence of observers or sitting at
the front of the class changed the way that students acted. In light of these limitations, we hope this work will be
taken as a first step to investigating ways to help online teachers read the room.

7 CONCLUSION
When schools went online during the COVID-19 pandemic, we saw teachers struggle with online classroom
engagement, and researchers sought to help them address these issues with technology. This study demonstrated
that using rigorous qualitative observations in classroom settings and quantitative analysis of wearable sensor
data did not correlate with emotional engagement in the class. However, there are promising future explorations
and directions to help us understand if wearable data can be used to measure student affect to improve online
education.
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